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Noise sensitivity of sub- and supercritically bifurcating patterns with group velocities close
to the convective-absolute instability
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The influence of small additive noise on structure formation near a forwards and near an inverted bifurcation
as described by a cubic and quintic Ginzburg Landau amplitude equation, respectively, is studied numerically
for group velocities in the vicinity of the convective-absolute instability where the deterministic front dynamics
would empty the system.
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I. INTRODUCTION

The formation of macroscopic structures@1# in systems
that are driven out of thermal equilibrium by an externa
imposed generalized stress are usually investigated by d
ministic field equations. However, under specific circu
stances, the influence of external deterministic or stocha
perturbations and of internal thermal noise on the patt
formation process should be taken into account to achie
more realistic and quantitative description of experimen
One prominent example are the so-called noise-susta
structures@2–14# in the convectively unstable parameter r
gime @15,16# in, e.g., the Taylor-Couette@3,4,7–9#, the
Rayleigh-Bénard @5,6,12# system, or nonlinear optics@13#.
Further examples are certain open-flow instabilities, e.g.
wakes and jets that are reviewed in Ref.@16#.

The noise-sustained structures@2–14# arise when an ex-
ternally imposed through-flow or an internally generat
group velocityv is large enough to ‘‘blow’’ the pattern out o
the system according to the deterministic field equations
this driving regime one observes in experiment@3,4,6,12,13#
structures that are sustained by sources that generate p
bations in the band of modes that are amplified accordin
the supercritical deterministic growth dynamics in dow
stream direction sufficiently far away from the inlet.

The criterion@15,16# at whichv the pattern is blown ou
of the system under deterministic laws which gave
threshold for the appearance of the noise-sustained, su
critically bifurcating patterns in the above described expe
ments is a linear one. It was nonlinearly extended
Chomaz@17# to the question of the propagation direction
nonlinear deterministic fronts in infinite systems that conn
the unstructured state to the finite-amplitude structured o

Here we study and compare the noise sensitivity of p
tern forming systems, in which the above described fro
are linear or nonlinear ones. To that end we investigate
cubic Ginzburg-Landau amplitude equation~GLE! for a su-
percritical forwards bifurcation and the quintic GLE for
subcritical inverted bifurcation, respectively, in one spa
dimension.

We solve the GLE with additive stochastic forcing n
merically. Our systems are finite but sufficiently long to a
1063-651X/2003/67~4!/046301~8!/$20.00 67 0463
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low the establishment of a statistically stationary larg
amplitude bulk part—provided the latter is possible with t
boundary condition of vanishing amplitude at the ends.
focus our attention to parameters in the vicinity of t
convective-absolute threshold at which the fronts of the
terministic GLE cease to propagate. And we investigate
particular, the statistical dynamics of phase and amplitu
fluctuations in the front region.

II. SYSTEM

We consider the stochastic, 1D Ginzburg-Landau equa

~] t1v]x!A5~m1]x
21g3uAu21g5uAu4!A1sh ~2.1!

for the complex amplitude

A5Re~A!1 i Im~A!5Rei F ~2.2!

depending onx,t. Here Re~Im! denotes the real~imaginary!
part andR5uAu is the modulus, andF is the phase ofA. The
coefficients in Eq.~2.1! are taken as real for simplicity. We
checked, however, that taking into account the~small! imagi-
nary parts, that appear, e.g., in the case of transv
Rayleigh-Bénard convection rolls propagating downstrea
in a small externally imposed lateral through-flow@5# or in
the case of downstream propagating Taylor vortices@3,18#
does not change the major findings presented in this pa
significantly. We consider the group- or mean flow veloc
v>0 in positivex direction and the linear growth ratem of A
as control parameters.

We investigate two fixed combinations of the nonline
coefficients (g3 ,g5) that we refer to in this paper as follows

g3521, g550: cubic GLE; ~2.3a!

g351, g5521: quintic GLE. ~2.3b!

The quantitys in Eq. ~2.1! measures the real strength of th
complex stochastic force

h~x,t !5Reh~x,t !1 iImh~x,t ! ~2.4!
©2003 The American Physical Society01-1
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with statistically independent real and imaginary parts Rh
and Imh, respectively. Both are Gaussian distributed w
zero mean andd correlated such that

^h~x1 ,t1!@h~x2 ,t2!#* &52d~x12x2!d~ t12t2!. ~2.5!

A. Unforced homogeneous solution

We are interested in the effect of small additive noise
the spatiotemporal structure formation in large but finite
semi-infinite systems. Nevertheless, it is useful to briefly
call first the properties of the most simple solutions of t
unforced GLE in an infinite system. This shows what o
might expect to see in the bulk of a very large system
away from the boundaries—-ignoring for the moment qu
tions related to boundary induced pattern selection proces

The GLE ~2.1! shows fors50 a continuous family of
traveling wave~TW! solutions

A~x,t !5Reiq(x2vt), ~2.6!

with constant wave numberq, frequency V52qv, and
modulusR given by

m2q21g3R21g5R450. ~2.7!

This TW solution family bifurcates at the marginal stabili
curve,m5q2, of theA50 solution out of the latter while the
former becomes unstable there. The critical values aremc
5qc5Vc50. The bifurcation is nonhysteretic and forwar
in the cubic case

R25m2q2 ~2.8!

and hysteretic, backwards, in the quintic case

R25
1

2
6Am2q21

1

4
. ~2.9!

Here the lower sign refers to the lower unstable TW solut
branch that exists for2 1

4 <m2q2<0. The upper TW solu-
tion branch identified by the1 sign in Eq.~2.9! exists be-
yond the saddle-node bifurcation valuem5q22 1

4 . These
TW solutions are stable for wave numbers outside the E
haus unstable band@19#.

B. Convective-absolute instability

The noise susceptibility of the pattern formation proce
described by GLE~2.1! changes significantly@2,16# when
crossing the parameter combination ofm,v shown in Fig. 1
for the so-called convective-absolute instability@15#. This
combination

mc2a55
1

4
v2 cubic GLE,

3

16S v21
2

A3
v21D quintic GLE

~2.10!
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is marked by the front solution of the deterministic GLE wi
s50 undergoing a reversal of the front propagating dire
tion in an infinite system. Consider a front that connects
basic stateA50 being realized atx→2` to a homogeneous
solution with AÞ0 at x→`. For parameter values below
~above! the respective curves in Fig. 1 this front moves to t
right ~left!. Thus the basic stateA50 ~the homogeneous so
lution AÞ0) expands to the right~left!. The region below
~above! the respective curves in Fig. 1 where the basic st
A50 ~the homogeneous stateAÞ0) invades the whole sys
tem is called the convectively~absolutely! unstable region of
the A50 solution @2,16#. Thus, boundary~2.10! is also
called the convective-absolute instability boundary.

For the cubic GLE the boundarymc2a5v2/4 results from
a linear analysis@2#. For the backwards bifurcating solutio
arising in the quintic GLE the respective front that reverts
propagation direction is a nonlinear one@20#. Note that in the
latter case the convective-absolute instability boundary@17#
connects forv→0 to the so-called Maxwell pointmc2a
5mM523/16: For this value the minima of the potenti

V(A)52
m

2
A22 1

4 A41 1
6 A6 have equal heightV50.

The boundary conditionA(x50,t)50 that we apply in
our simulations stops any front propagating to the left an
changes, i.e., it deforms the front profile when the front
sufficiently close to the boundary atx50. This can be seen
in Fig. 2 for the example of the deterministic quintic GLE
There the lines show the modulus profileR and the spatial
growth ratek5R8/R versusx together withk versusR ob-

FIG. 1. Convective-absolute instability boundaries~2.10! for the
unforced cubic and quintic GLE, respectively. For parameters
low the respective curve, front propagation is such that in the
sence of noise theA50 state invades theAÞ0 state. In the abso-
lutely unstable parameter regime above the respective curve
A50 state recedes and theAÞ0 state expands~as long as the front
is not hindered by a boundary!.
1-2
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tained numerically for several parameter values above
convective-absolute instability boundary. To facilitate co
parison of different cases we introduce the reduced horiz
tal ‘‘distance’’

D5
v

vc2a
21 ~2.11!

from the boundaries shown in Fig. 1. Here

vc2a~m!5H 2Am cubic GLE,

A4

3
~114m!2A1

3
quintic GLE

~2.12!

denotes the convective-absolute instability boundary~2.10!.
The results that we present here were obtained fom

.0, i.e., in a situation where the basic stateA50 is un-
stable. For the backwards bifurcation in the quintic GL

FIG. 2. Deformation of the front solutionR(x) ~a! of the deter-
ministic quintic GLE by the boundary conditionA(x50,t)50 in
the absolutely unstable regime form50.05 andv5(11D)vc2a as
indicated. The spatial growth ratek(x)5]xln R(x) ~b! deviates
from a freely propagating front with wave numberq50 that would
show @20# kL5v/21A(v2/4)2m @thick dots in ~b!# in the small-
amplitude ‘‘linear’’ part of the front.~c! showsk versusR in com-
parison with the prediction@20# k5(RN

2 2R2)/A3 for a stationary
front in an infinite system atD50,m50.05 for whichRN

2 51.048.
Thin dotted curves in~a!–~c! refer to a numerically obtained solu
tion for D50 at time 53104 which is not yet stationary. Here th
profile is still moving to the right, and in the absence of numeri
‘‘noise’’ we would expect this transient to approach theR[0 basic
state@cf. also Fig.~c!#.
04630
e
-
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with negative growth rates2 3
16 ,m,0, for which the above

cited potential has a minimum atA50, the situation is more
complicated@14#: Not only does the establishment of th
final front connecting the inlet conditionA50 with a statis-
tically stationary saturated bulk withuAu5O(1) depend sen-
sitively on the initial condition@say, A(x,t50)50 versus
uAu5O(1)] in the absolutely unstable regime,D,0. But
more importantly, in the convectively unstable regime,D
.0, we found that small noise does not seem to be abl
generate with the boundary conditionA(x50)50, a noise-
sustained finite-amplitude structure with^uAu2& of order one
when m,0: The deterministic front dynamics drives th
large-amplitude part downstream, and eventually any fin
system is filled only with small-amplitude fluctuations ofA
around the stable fixed pointA50 of the unforced system.

C. Noise strength

For the quintic GLE we choose the noise strengths
51023. The noise intensitys2 should be compared with th
minimum of the potential

V~A!52
m

2
A22g3

1

4
A42g5

1

6
A6. ~2.13!

For our quintic case (g351,g5521) the minimum atA2

5RN
2 5 1

2 1A 1
4 1m is V(RN)52 1

24 @116m1(114m)3/2#.
Thus, the noise ‘‘temperature’’s2 measured in units of
V(RN) is s2/uV(RN)u59.231026 for the control paramete
m50.05 that we have used in most of our calculations.

A rough estimate for an equivalent noise strength for
cubic GLE would be to demand that the reduced noise te
peratures2/V(RN) is in both cases the same. This wou
require for the cubic GLE at a commonm of, say, 0.05 thats
is by about a factor of 13 smaller than for the quintic GL

However, basing the comparison on the requirement
s2/V(RN) is the same for the cubic and quintic case one
to keep in mind that the curvatures ofV around the states
A50 andA5RN which are connected by the fronts rema
different—cf. Fig. 3. Since these curvatures aroundA50
(A5RN) measure the growth~decay! rates of fluctuations
around the respective states, it is useful to compare t
ratios via a kind of Ginzburg numberG5uV9(0)u/V9(RN).
One has Gcubic51/2 independent ofm and g3 while
Gquintic5m̃@114m̃1A114m̃#21 with m̃52g5m/g3

2. Thus
for m50.05 and g351,g5521 one has Gcubic
.23 Gquintic . This largely explains the stronger noise se
sitivity of the cubic GLE for our parameters. In view of it w
investigated the whole range ofs between 1029 and 1022

for the cubic GLE.
The cubic GLE with additional~but very small! complex

coefficients has previously been investigated, e.g., for no
strengths of abouts51.931026 in our units of Eqs.~2.1!–
~2.5!. The corresponding noise temperatures2/V(RN) is
about 1028 for a typical value of, say,m50.035 @3#. This
noise was found to fit the experimental results on the no
sustained traveling Taylor vortices under statistically stati

l
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A. SZPRYNGER AND M. LÜCKE PHYSICAL REVIEW E67, 046301 ~2003!
ary fronts in the convectively unstable regime of op
Taylor-Couette systems with axial through-flow@3#.

D. Numerical methods

Equation ~2.1! was solved numerically with a forward
time, centered-space method@21# subject to the boundary
conditions

A~x50,t !505A~x5L,t ! ~2.14!

on the complex amplitude. System sizesL were chosen to be
sufficiently large to allow for the establishment of a satura
bulk amplitude. Typically, a spatial stepdx50.4 was used
with a time step ofdt50.072. Calculations were performe
for sequences of the paramaterv at several values of the
control parameterm. Most of them were done atm50.05.
The noise sourceh was realized by the Gaussian distribut
random numbers of unit variance that were divided
Adtdx to ensure the independence of the correlation fu
tions of the discretization. A test of different pseudorand
number generators, namely, L’Ecuyer’s method with Ba
Durham shuffle@21#, ran3 @21#, and the R250 shift-registe
random number generator@22# gave similar results.

After the simulations were started, a sufficiently long tim
depending on the parameters, e.g., on the closeness t
convective-absolute threshold had to be waited until the s
tem relaxed into a statistically stationary state with time
dependent averages. Thereafter time averages were eval
over several consecutive time intervals and finally averag
Within the forward-time integration method,A(x,t) remains
uncorrelated withh(x8,t) at the same time,̂ f (h)g(A)&
5^ f (h)&^g(A)&, so that, e.g.,̂ Ah&50 as well as^qh&
50. But ^Vh&Þ0. Here the frequencyV ~wave numberq)
is defined as a forward-time~centered-space! difference of
phase~3.2!.

FIG. 3. Reduced potentialsV ~2.13! corresponding to the rea
cubic ~dashed line! and quintic ~dotted line! GLE. For the cubic
case the plot is independent ofm,g3. For the quintic case it depend
on the combinationm̃52g5m/g3

2. Herem̃50.05.
04630
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III. RESULTS

The influence of additive noise on the pattern formati
process described by GLE~2.1! is described in this section

A. Growth length ø

In Fig. 4 we show how the growth length, of the down-
stream pattern occurring in the forced cubic GLE varies w
noise strengths. Here, is defined by the distance fromx
50 at which the root-mean squareA^uAu2& of the fluctuating
complex amplitudeA reaches half its bulk value. In the ab
sence of noise, diverges at the convective-absolute thres
old v5vc2a , since there the deterministic pattern is blow
out of the system.

For finites the solution with finiteA is noise sustained in
the convectively unstable regimeD.0 @2#. In this regime,
is far from the convective-absolute threshold well describ
by the relation,;2(11A2D)ln s following from a quasi-
linear analysis of the cubic GLE@11# presented here in the
Appendix. However, in the vicinity of the thresholdD50,
the growth length, obtained from the nonlinear GLE show
a characteristic crossover to the behavior atD,0.

The noise influences also in this absolutely unstable
gime, D,0, the finite-amplitude solution at least close
threshold: The curves,(D,s) in Fig. 4~a! break away from
the dotted ,(D,s50) reference growth length curve a
negativeD values that decrease with increasings, i.e., fur-
ther and further away from the convective-absolute thre
old. The associated inflection points can be most easily id

FIG. 4. Growth length, ~a! and its derivative],/]D ~b! versus
D near the convective-absolute threshold for the cubic GLE am
50.05 for various noise strengthss. The inset in~b! shows the
variation of the peak of],/]D with s.
1-4
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tified by the maxima in],(D,s)/]D shown in Fig. 4~b!.
These peak positions of],/]D vary with s as shown in the
inset of Fig. 4~b!. So the growth length shows for the cub
GLE a definite noise sensitivity also in the absolutely u
stable regime.

This sensitivity is significantly smaller in the quinti
GLE. This can be seen by comparing the behavior of
growth length with the fluctuations of the modulusR5uAu,
of the frequency, and of the wave number~cf., Sec. III B!. To
that end we show in Figs. 5 and 6, and],/]D together with
the inverse of the standard deviations of the modulus

sR5A^R2&2^R&2, ~3.1!

of the frequencysV ~3.9!, and of the wave numbersq ~3.9! at
m50.05 as functions ofD for the cubic and quintic GLE,
respectively. The noise strengthss52.531025 and 1023,
respectively, used for these figures are roughly equiva
based on the criterion described in Sec. II C. However,
potential minima in the cubic case are broader than in
quintic case—cf. Fig. 3—and therefore the modulus fluct
tions in the former are larger than those in the latter one. T
can be seen by comparing the reduced inverseA^R2&/sR in
the absolutely unstable regime,D,0, of Figs. 5~c! and 6~c!.

The peak position of],/]D coincides with the drop-off in
the inverse standard deviations 1/s. For the cubic GLE~Fig.

FIG. 5. Inverse of the standard deviations of frequencysV ~a!,
wave numbersq ~b!, and amplitude modulussR ~c! for the stochas-
tic cubic GLE. Results are reduced byS ~3.6! or A^uAu2&, respec-
tively, and plotted as functions ofD for three downstream location
x5,/2, ,, and 2,. ~d! shows the growth length, of A^uAu2& to-
gether with its derivative],/]D. Piecewise straight lines are guide
to the eye. Parameters arem50.05 ands52.531025.
04630
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5! it occurs atD520.049, thus being shifted significantl
into the absolutely unstable regime, while that of the quin
GLE ~Fig. 6! remains atD50.

As an aside we mention that for the quintic GLE at
subcritical growth parameter of, say,m520.05 the behavior
of the growth length, and of],/]D is for D,0 similar to
that shown in Fig. 6~d! for m50.05. Form,0,D.0 we did
not find a noise-sustained large-amplitude solution.

B. Frequency and wave-number correlations

Previous investigations of the forced cubic GLE in t
bulk part of the solution at far downstream locationsx@,
showed for different but small noise strengths that freque
fluctuations are in the absolutely unstable regime mu
smaller than in the convectively unstable regime@3#. In order
to study this question of the noise sensitivity in both regim
we have investigated in more detail the frequency and wa
number fluctuations atx5,/2,,, and 2,. The results are
shown in Fig. 5 for the cubic GLE and in Fig. 6 for th
quintic GLE. Before we discuss them we first present so
basic properties of the phase fluctuations as described
forced GLE~2.1!.

The phase fluctuationsF of complex amplitude~2.2! de-
fine the frequencyV and the wave numberq

FIG. 6. Inverse of the standard deviations of frequencysV ~a!,
wave numbersq ~b!, and amplitude modulussR ~c! for the stochas-
tic quintic GLE. Results are reduced byS ~3.6! or A^uAu2&, respec-
tively, and plotted as functions ofD for three downstream location
x5,/2, ,, and 2,. ~d! shows the growth length, of A^uAu2& to-
gether with its derivative],/]D. Piecewise straight lines are guide
to the eye. Parameters arem50.05 ands51023.
1-5
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V5Ḟ5ImS Ȧ

A
D , q5F85ImS A8

A D , ~3.2!

respectively. Here dot~prime! denotes temporal~spatial! de-
rivative. The growth ratek of the modulus is given by

k5
R8

R
5ReS A8

A D . ~3.3!

By means of Eq.~2.1! the frequency can be expressed as

V5~2k2v !q1q81
s

R2
Im~hA* !. ~3.4!

This relation holds for the cubic as well as for the quin
GLE with real coefficients. By squaring and averaging E
~3.4!, one gets the correlation functions

^V2&1v2^q2&12v^Vq&1^q82 &22^Vq8&22v^qq8&

24v^kq2&14^k2q2&24^kVq&14^kqq8&

.
s2^uhu2&

2^R2&
. ~3.5!

On the rhs we have used the fact that within our forwa
time integration methodA remains uncorrelated withh at the
same time, and we have approximated^1/R2& by 1/̂ R2&.

Given that ^uh(t,x)u2&52/dxdt in our finite difference
simulation it is convenient to scale all correlations in E
~3.5! by the quantity

S25
s2

RN
2

1

dxdt
, RN

2 5H m cubic GLE,

1

2
1Am1

1

4
quintic GLE,

~3.6!

thereby removing the singularities from the reduced corre
tion functions. For example, one finds that

^~V1vq2q8!2&

S2
.

RN
2

^R2&
. ~3.7!

Here we have neglected the second line in Eq.~3.5!, since all
correlations in Eq.~3.5! involving the growth ratek are very
small.

^V2& is typically two orders of magnitude larger tha
^q2& in the absolutely unstable regime,D,0,—cf. Figs. 5
and 6 discussed further below. There the only contributi
to Eqs.~3.5! and~3.7! of the same order aŝV2& are^Vq8&
and^q82 &—all the other correlations can be neglected—a
furthermore^Vq8&.^q82 &. Thus,

^V2&.S21^q82& ~3.8!
04630
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in the bulk part of the system with saturated amplitud
where^R2&.RN

2 . However, in the convectively unstable re
gime, D.0, with much larger phase fluctuations the situ
tion is more complex. Herêq2& is larger than̂ V2& except
for the upstream region where the reverse holds.

In Figs. 5 and 6 we show the inverse of the stand
deviations

sV5A^V2&2^V&2, sq5A^q2&2^q&2, ~3.9!

reduced byS ~3.6! for the cubic and quintic GLE, respec
tively, as functions ofD for x5,/2,,, and 2,. For the pa-
rameters shown in Figs. 5 and 6 the mean frequency^V& as
well as the mean wave number^q& are negligible. Plotting
the inverse ofsV , sq , andsR allows to visualize the smal
fluctuations in the absolutely unstable regime better than
direct plot of, say,sV

2 . Such plots forsV
2 have been presente

previously for the small noise strengths occurring in t
Taylor-Couette experiments@3#. On the lower level of reso-
lution inherent in this data presentation these results sh
similar behavior as ours. However, plotting 1/sV instead al-
lows to identify more clearly the crossover behavior from t
parameter regime with small fluctuations to that with lar
ones.

The D variations of 1/sV , 1/sq , 1/sR , and of],/]D in-
dicate that this transition is shifted to negativeD, i.e., into
the absolutely unstable regime. A similar result for the tra
sition between deterministic and noise-sustained stand
wave solutions of complex coupled cubic GLE’s was d
duced from the behavior of the second moments of the
quency and wave-number power spectra of the fluctua
amplitudes@10#: With decreasingm the correlation length
defined via the time average of the second moment of
Fourier spectrum ofA(k,t) begins to decrease towards va
ues characteristic for noise-sustained structures in the
vectively unstable regime clearly beforemc2a is reached
when noise is present. Similarly, the width of the frequen
power spectrum starts to increase with decreasingm already
above the convective-absolute thresholdmc2a @10#.

However, the variation of 1/sV with D shows for the cu-
bic case in Fig. 5 a broader crossover interval between lar
frequency fluctuations in the convectively unstable regime
D.0 and small frequency fluctuations in the absolutely u
stable regime atD,0 than the curves 1/sq and 1/sR for
wave-number and modulus fluctuations. TheD value at
which 1/sq and 1/sR drop down towards zero agrees qui
well with the peak location of],/]D. The latter moves with
increasing noise strength further into the absolutely unsta
regime as shown, e.g., for the cubic GLE in the inset of F
4~b!.

The variations ofs(D) with D at different downstream
locationsx5,/2,,, and 2, are similar to each other: withD
becoming more negative, i.e., further and further into
absolutely unstable regime the fluctuationssV and sq be-
come constant at levels that depend on the measu
location—the closer to the inlet, whereR becomes smaller
the larger are the fluctuations. This behavior is reflecting
relationsV;sq}R21 that can be read off directly from Eq
~3.5!.
1-6
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The downstream reduction of the variancesV of the fre-
quency fluctuations with increasing distance from the in
and with increasing amplitude along the front is shown
Fig. 7 for the quintic GLE. There we compare the behav
of sV together with the front profiles ofA^uAu2& in the abso-
lutely and in the convectively unstable regime close to
thresholdD50 for m50.05.

IV. CONCLUSION

We have studied numerically the influence of small ad
tive noise on pattern formation near a forwards and nea
inverted bifurcation as described by a cubic and quin
GLE, respectively, when a finite group velocityv can blow
the finite-amplitude part out of the system, i.e., in the vicin
of the so-called convective-absolute instability atD
5v/vc2a(m)2150. The front that connects the inlet con
dition A(x50)50 to the finite-amplitude downstream bu
part ^uAu2&.RN

2 is for the cubic GLE more sensitive to th
applied noise strength than for the quintic case. This is pa
related to the different magnitudes of the curvatures of
deterministic GLE potentials around the statesA50 andA
5RN : the resulting growth enhancement of fluctuations n
A50 is larger in the cubic than in the quintic case and
addition the damping of fluctuations nearA5RN is smaller
in the cubic than in the quintic case.

In the cubic case the transition between the regimes
small and large fluctuations of amplitude, frequency, a
wave number is shifted to a negativeD into the absolutely
unstable regime. Simultaneously, the pattern growth len
,(D) has there a characteristic inflection point that shows

FIG. 7. Spatial variation of the standard deviationsV of the
frequency reduced byS ~a! and ofA^uAu2& ~b! for the quintic GLE
in the absolutely and convectively regime atD520.1273 andD
50.0908, respectively. After the integration time ofT553105

used in this plot,sV was forD50.0908 not yet fully stationary in
the growth region ofA^uAu2&. Parameters arem50.05 and s
51023.
04630
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as a peak in],/]D. In the quintic case all this occurs at th
unshifted convective-absolute thresholdD50. Common to
both cases is that the fluctuations decrease along the fro
both regimes with growing pattern amplitudeA^uAu2&.

For negative subcritical amplitude growth rates,m,0, we
did not find noise-sustained, large-amplitude, backwards
furcating patterns whenD is positive: the nonlinear deter
ministic front dynamics of the quintic GLE blows any larg
amplitude part downstream away from the inlet whereA
50 and eventually any finite system is filled only wit
small-amplitude fluctuations ofA around the stable fixed
point A50 of the unforced system.
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APPENDIX

Here we estimate the noise dependence of the do
stream growth length, of the nonlinear structure in the con
vectively unstable regime of the cubic GLE where this stru
ture is noise sustained. To that end we approximate, by the
length where the mean squared amplitudeClin(x)
5^uAlin(x)u2& of the linear GLE has grown from the inlet
value A(x50)50 to, say, one half of the nonlinearly satu
rated bulk valuê uAu2&.m/2. So we solve the equation

Clin~x5, !5
1

2
m ~A1!

for ,. Actually the linear solution may not hold there an
more. But as it will become obvious below the result
roughly independent of the coefficient chosen in Eq.~A1! so
also smaller numbers than12 could be chosen here for a cha
acteristic growth length.

We evaluate the equal-time correlationClin(x) via the
frequency integral of the spectrumClin(x,v) of the time-
displaced autocorrelation function of fluctuations ofAlin at
the same downstream positionx. For large downstream dis
tancesx from the inlet this spectrum is given by@11#

Clin~x,v!5
2s2

2uK1* 2K2u2 S 1

ImK1
1

1

ImK2
De22ImK1x

~A2!

with

K (
1
2)56 iAmc2a2m2 iv2 iAmc2a. ~A3!

This spectrum~A2! is strongly peaked at the center,v
50, of the band of modes,22Ammc2a,v,2Ammc2a,
that are amplified in the convectively unstable regime. Th
the aforementioned frequency integral may be approxima
by
1-7
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Clin~x!5E
2`

` dv

2p
Clin~x,v!;Ammc2aClin~x,v50!

5
s2

4Am
exp2iK 1(v50)x. ~A4!

The last equality follows from Eq.~A2! at v50. Applying
now condition~A1! one obtains
tt

ef

04630
,;
1

iK 1~v50!
ln

21/2m3/4

s
. ~A5!

Using mc2a /m5(11D)2 in Eq. ~A3! one sees thatiK 1(v
50)5Am@12A2D1O(D)# for D!1 so that finally at
fixed m,

,;2@11A2D1O~D!#~ ln s1const!. ~A6!
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