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Noise sensitivity of sub- and supercritically bifurcating patterns with group velocities close
to the convective-absolute instability
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The influence of small additive noise on structure formation near a forwards and near an inverted bifurcation
as described by a cubic and quintic Ginzburg Landau amplitude equation, respectively, is studied numerically
for group velocities in the vicinity of the convective-absolute instability where the deterministic front dynamics
would empty the system.
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[. INTRODUCTION low the establishment of a statistically stationary large-
amplitude bulk part—provided the latter is possible with the

The formation of macroscopic structurgk| in systems boundary condition of vanishing amplitude at the ends. We
that are driven out of thermal equilibrium by an externally focus our attention to parameters in the vicinity of the
imposed generalized stress are usually investigated by detezonvective-absolute threshold at which the fronts of the de-
ministic field equations. However, under specific circum-terministic GLE cease to propagate. And we investigate, in
stances, the influence of external deterministic or stochastiparticular, the statistical dynamics of phase and amplitude
perturbations and of internal thermal noise on the patterfluctuations in the front region.
formation process should be taken into account to achieve a
more realistic and quantitative description of experiments. Il. SYSTEM
One prominent example are the so-called noise-sustained
structureg§2—14] in the convectively unstable parameter re- We consider the stochastic, 1D Ginzburg-Landau equation
gime [15,16 in, e.g., the Taylor-Couett¢3,4,7-9, the

Rayleigh-Bmard [5,6,13 system, or nonlinear optidgl3]. (Gt va)A=(u+ 5+ g3l AP+ gs|AlYA+an (2.0)
Further examples are certain open-flow instabilities, e.g., in
wakes and jets that are reviewed in Réf6]. for the complex amplitude
The noise-sustained structurgs-14] arise when an ex- )
ternally imposed through-flow or an internally generated A=RegA)+ilm(A)=Re?® (2.2

group velocityv is large enough to “blow” the pattern out of

the system according to the deterministic field equations. Iflepending orx,t. Here Re(Im) denotes the redimaginary

this driving regime one observes in experimg#,6,12,13  part andR=|A| is the modulus, and is the phase oh. The

structures that are sustained by sources that generate pertGeefficients in Eq(2.1) are taken as real for simplicity. We

bations in the band of modes that are amplified according t6hecked, however, that taking into account theal) imagi-

the supercritical deterministic growth dynamics in down-hary parts, that appear, e.g., in the case of transverse

stream direction sufficiently far away from the inlet. Rayleigh-Baard convection rolls propagating downstream
The criterion[15,16 at whichv the pattern is blown out in @ small externally imposed lateral through-fl¢4 or in

of the system under deterministic laws which gave thethe case of downstream propagating Taylor vortic48]

threshold for the appearance of the noise-sustained, sup&toes not change the major findings presented in this paper

critically bifurcating patterns in the above described experi-sSignificantly. We consider the group- or mean flow velocity

ments is a linear one. It was nonlinearly extended by =0 in positivex direction and the linear growth rateof A

Chomaz[17] to the question of the propagation direction of as control parameters.

nonlinear deterministic fronts in infinite systems that connect We investigate two fixed combinations of the nonlinear

the unstructured state to the finite-amplitude structured onegoefficients ¢J3,9s) that we refer to in this paper as follows:
Here we study and compare the noise sensitivity of pat-

tern forming systems, in which the above described fronts g3=—1, gs=0: cubic GLE; (2.39
are linear or nonlinear ones. To that end we investigate the
cubic Ginzburg-Landau amplitude equati@BLE) for a su- 0s=1, gs=—1: quintic GLE. (2.3b

percritical forwards bifurcation and the quintic GLE for a
subcritical inverted bifurcation, respectively, in one spatialThe quantitys in Eg. (2.1) measures the real strength of the

dimension. complex stochastic force
We solve the GLE with additive stochastic forcing nu-
merically. Our systems are finite but sufficiently long to al- n(x,t)=Ren(x,t) +ilmz(x,t) (2.9
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with statistically independent real and imaginary parts;Re
and Impy, respectively. Both are Gaussian distributed with
zero mean and correlated such that

0.2

(n(X1,t)[7(X2,t2)]*) =28(x1—X2) 8(t1—t3). (2.9
0.1
A. Unforced homogeneous solution

We are interested in the effect of small additive noise on
the spatiotemporal structure formation in large but finite or % 0
semi-infinite systems. Nevertheless, it is useful to briefly re-
call first the properties of the most simple solutions of the
unforced GLE in an infinite system. This shows what one
might expect to see in the bulk of a very large system far -0.1
away from the boundaries—-ignoring for the moment ques-
tions related to boundary induced pattern selection processes.
The GLE (2.1) shows forc=0 a continuous family of

traveling wave(TW) solutions 0.2 -
= Rddx—vt) =TI AN A A I T T T T
A1) Re ’ (2'6) 0 0.2 04 0.6 0.8 1
with constant wave numbeq, frequency(Q)=—quv, and v
modulusR given by FIG. 1. Convective-absolute instability boundari2slO for the
unforced cubic and quintic GLE, respectively. For parameters be-
,u—qz—i- g3R2+ g5R4=O. 2.7 low the respective curve, front propagation is such that in the ab-

sence of noise thA=0 state invades thA#0 state. In the abso-
This TW solution family bifurcates at the marginal stability lutely unstable parameter regime above the respective curve, the
curve, = q?, of theA=0 solution out of the latter while the A=0 state recedes and the* 0 state expandgs long as the front
former becomes unstable there. The critical valuesare is not hindered by a boundary
=0.=Q.=0. The bifurcation is nonhysteretic and forwards

in the cubic case is marked by the front solution of the deterministic GLE with
o=0 undergoing a reversal of the front propagating direc-
R*=u—q? (2.8 tion in an infinite system. Consider a front that connects the
basic statéA=0 being realized at— — to a homogeneous
and hysteretic, backwards, in the quintic case solution with A#0 at x—o. For parameter values below
(above the respective curves in Fig. 1 this front moves to the
, 1 , 1 right (left). Thus the basic stat®=0 (the homogeneous so-
Ri=o=\ w0ty (2.9 |ution A#0) expands to the rightieft). The region below

(above the respective curves in Fig. 1 where the basic state
=0 (the homogeneous stafe# 0) invades the whole sys-
tem is called the convectiveljabsolutely unstable region of
the A=0 solution [2,16]. Thus, boundary(2.10 is also

Here the lower sign refers to the lower unstable TW solutio
branch that exists for- < u—q?<0. The upper TW solu-

tion branch identified by the- sign in Eq.(2.9) exists be- _ i .
yond the saddle-node bifurcation valye=g?—%. These called the convective-absolute instability boundary.

i .2
TW solutions are stable for wave numbers outside the Eck- 'For the cublg: GLE the boundawc,a—q 4 re;ults f“’m
haus unstable bar{dd]. a linear analysi$2]. For the backwards bifurcating solution

arising in the quintic GLE the respective front that reverts its
propagation direction is a nonlinear of#]. Note that in the
B. Convective-absolute instability latter case the convective-absolute instability bounda]
The noise susceptibility of the pattern formation processonnects forv—0 to the so-called Maxwell poinfi.,
described by GLE2.1) changes significantly2,16] when ~ =mw= —3/16: For this value the minima of the potential

crossing the parameter combinationgofv shown in Fig. 1 _ Moo 1,4, 16 —
for the so-called convective-absolute instabilfys]. This V(A= 2A A+ 3A” have equal heighv=0.
combination The boundary conditiolA(x=0,t)=0 that we apply in
our simulations stops any front propagating to the left and it
Evz cubic GLE, cha_nges, i.e., it deforms the front profile vyhen the front is
4 sufficiently close to the boundary at=0. This can be seen
Me-a=y 4 5 (2.10  in Fig. 2 for the example of the deterministic quintic GLE.
| p2+ _v_1> quintic GLE There the lines show the modulus profiReand the spatial
16 J3 growth ratexk=R’/R versusx together withx versusR ob-
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X '(a')' rrrrTTTTTTTTTT with negative growth rates = < u <0, for which the above
or A=-0.018 cited potential has a minimum &t=0, the situation is more
= F complicated[14]: Not only does the establishment of the

= 05F ;o - final front connecting the inlet conditioA=0 with a statis-
i 000 ] tically stationary saturated bulk witth|=O(1) depend sen-
15k Lt 0 sitively on the initial condition[say, A(x,t=0)=0 versus
Ll ® ] |A|=0(1)] in the absolutely unstable regimé&y<0. But
10F K . more importantly, in the convectively unstable reginde,
g F | 1 >0, we found that small noise does not seem to be able to
05F SN generate with the boundary conditidq{x=0)=0, a noise-
: sustained finite-amplitude structure withA|?) of order one
ooty e when u<0: The deterministic front dynamics drives the
° 1 x 20 large-amplitude part downst d eventuall finit
arge-amplitude part downstream, and eventually any finite
system is filled only with small-amplitude fluctuations Af
around the stable fixed poi#t=0 of the unforced system.
K (A=
= 0.5 C. Noise strength
= For the quintic GLE we choose the noise strength
=10"3. The noise intensity? should be compared with the
minimum of the potential
1 1
04" V(A)=— %AZ— g3ZA4— g56A6. (2.13

FIG. 2. Deformation of the front solutioR(x) (a) of the deter-
ministic quintic GLE by the boundary conditiof(x=0t)=0 in For our quintic casedz=1,9s=—1) the minimum atA?

the absolutely unstable regime far=0.05 andv=(1+A)v._, as —R2=14 /;+ ; = 1M1 +6u+(1+ 3/
indicated. The spatial growth rate(x)=a,In R(x) (b) deviates R\=2 aTK “IS V(Ry) , 224[1 6u (1. 4’““). il
Thus, the noise “temperature= measured in units of

from a freely propagating front with wave numtggr 0 that would . _
show [20] «, —v/2+ \(0?A)— 2 [thick dots in(b)] in the small- V(R is 0%/[V(Ry)[=9.2x10"° for the control parameter
amplitude “linear” part of the front(c) showsk versusR in com- n=0.05 that V‘,’e have used in most of OW calculations.
parison with the predictiofi20] x=(R3—R?)//3 for a stationary A rough estimate for an equivalent noise strength_ for the
front in an infinite system aA = 0,4 =0.05 for whichRZ =1.048. cubic GLE would b_e t_o demand that the reduced noise tem-
Thin dotted curves irfa)—(c) refer to a numerically obtained solu- peraturec?/V(Ry) is in both cases the same. This would
tion for A=0 at time 5< 10* which is not yet stationary. Here the require for the cubic GLE at a commanof, say, 0.05 thatr
profile is still moving to the right, and in the absence of numericalis by about a factor of 13 smaller than for the quintic GLE.
“noise” we would expect this transient to approach Re=0 basic However, basing the comparison on the requirement that
state[cf. also Fig.(c)]. a?IV(Ry) is the same for the cubic and quintic case one has
to keep in mind that the curvatures Wfaround the states
tained numerically for several parameter values above th&=0 andA=Ry which are connected by the fronts remain
convective-absolute instability boundary. To facilitate com-different—cf. Fig. 3. Since these curvatures arouke 0
parison of different cases we introduce the reduced horizonFA=R,) measure the growtlidecay rates of fluctuations

tal “distance” around the respective states, it is useful to compare their
ratios via a kind of Ginzburg numbées=|V"(0)|/V"(Ry).
A= v q 2.19) One has G¢pic=1/2 independent ofu and g; while
Uc-a ' Guintic= B[ 1+ 4%+ V1+47%] * with 2= —gsu/g3. Thus

for w=0.05 and g;=1gs=—1 one has Ggypic

=23 Gquintic- This largely explains the stronger noise sen-
. sitivity of the cubic GLE for our parameters. In view of it we

2p cubic GLE, investigated the whole range of between 10° and 10?2

Ve-alm)= 4 1 for the cubic GLE.
§(1+4'“)_ 3 quintic GLE The cubic GLE with additionafbut very small complex

(2.12 coefficients has previously been investigated, e.g., for noise

strengths of aboutr=1.9x 10" ® in our units of Eqs(2.1)—

denotes the convective-absolute instability boundarg0. (2.5). The corresponding noise temperatwé/V(Ry) is

The results that we present here were obtainedfor about 108 for a typical value of, sayu=0.035[3]. This
>0, i.e., in a situation where the basic st#e=0 is un- noise was found to fit the experimental results on the noise-
stable. For the backwards bifurcation in the quintic GLEsustained traveling Taylor vortices under statistically station-

from the boundaries shown in Fig. 1. Here
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FIG. 3. Reduced potentialg (2.13 corresponding to the real ®
cubic (dashed ling and quintic(dotted ling GLE. For the cubic ]
case the plot is independent @fg;. For the quintic case it depends
on the combination: = — gsu/g3. Herei=0.05. 1000
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FIG. 4. Growth lengti (a) and its derivative)¢/dA (b) versus
A near the convective-absolute threshold for the cubic GLEz at
Equation (2.1) was solved numerically with a forward- =0_.05 for various noise strengths The inset in(b) shows the
time, centered-space meth@1] subject to the boundary variation of the peak 0d¢/JA with o.
conditions

D. Numerical methods

IIl. RESULTS

Ax=01)=0=A(x=L.1) (2.14 The influence of additive noise on the pattern formation

process described by GLR.1) is described in this section.

on the complex amplitude. System sizewere chosen to be
sufficiently large to allow for the establishment of a saturated A. Growth length €

bulk amplitude. Typically, a spatial stegx=0.4 was used In Fig. 4 we show how the growth lengthof the down-
with a time step ofdt=0.072. Calculations were performed stream pattern occurring in the forced cubic GLE varies with
for sequences of the paramaterat several values of the noise strengthr. Here ¢ is defined by the distance from
control parametep.. Most of them were done gi=0.05. =0 at which the root-mean squa€|A[?) of the fluctuating
The noise sourcey was realized by the Gaussian distributed complex amplitudeA reaches half its bulk value. In the ab-
random numbers of unit variance that were divided bysence of noisé diverges at the convective-absolute thresh-
dtdx to ensure the independence of the correlation funceld v=v._,, since there the deterministic pattern is blown
tions of the discretization. A test of different pseudorandomout of the system.
number generators, namely, L'Ecuyer’s method with Bays- For finite o the solution with finiteA is noise sustained in
Durham shufflg[21], ran3[21], and the R250 shift-register the convectively unstable regime>0 [2]. In this regime
random number generatfi22] gave similar results. is far from the convective-absolute threshold well described
After the simulations were started, a sufficiently long timeby the relationf ~ — (1+ J2A)In ¢ following from a quasi-
depending on the parameters, e.g., on the closeness to theear analysis of the cubic GLEL1] presented here in the
convective-absolute threshold had to be waited until the sysAppendix. However, in the vicinity of the thresholtl=0,
tem relaxed into a statistically stationary state with time in-the growth lengtif obtained from the nonlinear GLE shows
dependent averages. Thereafter time averages were evaluasedharacteristic crossover to the behavioAatO.
over several consecutive time intervals and finally averaged. The noise influences also in this absolutely unstable re-
Within the forward-time integration methoéy(x,t) remains  gime, A<O0, the finite-amplitude solution at least close to
uncorrelated withz(x’,t) at the same time(f(7)g(A)) threshold: The curveé(A,o) in Fig. 4a) break away from
=(f(n))(g(A)), so that, e.g.{An)=0 as well as(qn) the dotted¢(A,0=0) reference growth length curve at
=0. But(Q #)#0. Here the frequenc§2 (wave numbeq) negativeA values that decrease with increasimgi.e., fur-
is defined as a forward-timé&entered-spagedifference of  ther and further away from the convective-absolute thresh-
phase(3.2). old. The associated inflection points can be most easily iden-
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FIG. 5. Inverse of the standard deviations of frequesgya), FIG. 6. Inverse of the standard deviations of frequesgya),

wave numbes, (b), and amplitude modulus; (c) for the stochas-  wave numbes, (b), and amplitude modulus,, () for the stochas-
tic cubic GLE. Results are reduced By(3.6) or \(|A[?), respec- tic quintic GLE. Results are reduced By(3.6) or \(|A[?), respec-
tively, and plotted as functions df for three downstream locations tively, and plotted as functions af for three downstream locations
x=4{/2, ¢, and Z. (d) shows the growth lengti of \{[A[%) to-  x=+¢/2, ¢, and Z. (d) shows the growth lengtk of \{[A[?) to-
gether with its derivative¢/JA. Piecewise straight lines are guides gether with its derivativeg{/JA. Piecewise straight lines are guides
to the eye. Parameters gue=0.05 ando=2.5x 10" °. to the eye. Parameters atie=0.05 ando=10"°.

tified by the maxima ing¢(A,o)/dA shown in Fig. 4b).
These peak positions @f/JA vary with o as shown in the
inset of Fig. 4b). So the growth length shows for the cubic
GLE a definite noise sensitivity also in the absolutely un-
stable regime.

This sensitivity is significantly smaller in the quintic
GLE. This can be seen by comparing the behavior of th
growth length with the fluctuations of the modulRs=|A|,
of the frequency, and of the wave numigef., Sec. 11l B. To
that end we show in Figs. 5 andfGandd€/dA together with
the inverse of the standard deviations of the modulus

5) it occurs atA = —0.049, thus being shifted significantly
into the absolutely unstable regime, while that of the quintic
GLE (Fig. 6) remains aA =0.

As an aside we mention that for the quintic GLE at a
subcritical growth parameter of, say= —0.05 the behavior
of the growth lengtif and of 9€/dA is for A<O similar to
$hat shown in Fig. &) for ©=0.05. Foru<0,A>0 we did
not find a noise-sustained large-amplitude solution.

B. Frequency and wave-number correlations

sg=V(R?)—(R)?, (3.1 Previous investigations of the forced cubic GLE in the
bulk part of the solution at far downstream locatiotes €
of the frequencys, (3.9), and of the wave numbey, (3.9 at  showed for different but small noise strengths that frequency
n=0.05 as functions ofA for the cubic and quintic GLE, fluctuations are in the absolutely unstable regime much
respectively. The noise strengts=2.5x10 ° and 103, smaller than in the convectively unstable regir@g In order
respectively, used for these figures are roughly equivalerto study this question of the noise sensitivity in both regimes
based on the criterion described in Sec. Il C. However, thave have investigated in more detail the frequency and wave-
potential minima in the cubic case are broader than in thewmber fluctuations ak=¢/2,¢, and 2. The results are
quintic case—cf. Fig. 3—and therefore the modulus fluctuashown in Fig. 5 for the cubic GLE and in Fig. 6 for the
tions in the former are larger than those in the latter one. Thiguintic GLE. Before we discuss them we first present some
can be seen by comparing the reduced invafs'@2>/sR in basic properties of the phase fluctuations as described by
the absolutely unstable regim&<0, of Figs. c) and Gc). forced GLE(2.1).
The peak position ofi€/JA coincides with the drop-off in The phase fluctuation® of complex amplitud€2.2) de-
the inverse standard deviations.1For the cubic GLEFig.  fine the frequency) and the wave numbeg
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_ A Al in the bulk part of the system with saturated amplitude,
Q=d=Im K)’ qg=d'= Im(x), (3.2 where(R?)=R?. However, in the convectively unstable re-

gime, A>0, with much larger phase fluctuations the situa-
PR, 2\ 2

respectively. Here dadjprime) denotes temporabkpatia) de- tion is more complex. Hereq®) is larger than((2*) except

rivative. The growth ratec of the modulus is given by

for the upstream region where the reverse holds.
In Figs. 5 and 6 we show the inverse of the standard

R Al deviations
K=—=Re( ) (3.3
so= W0 —(Q)% s;=VaD—(q)% (3.9

R
By means of Eq(2.1) the frequency can be expressed as reduced byS (3.6) for the cubic and quintic GLE, respec-
tively, as functions ofA for x=¢/2,¢(, and Z. For the pa-
rameters shown in Figs. 5 and 6 the mean frequéity as
QO=(2k-v)q+q’ + 1Im(7;A*). (3.4)  Wwell as the mean wave numbeq) are negligible. Plotting
R? the inverse ofs,, s;, andsg allows to visualize the small
fluctuations in the absolutely unstable regime better than in a
This relation holds for the cubic as well as for the quintic direct plot of, says? . Such plots fos? have been presented
GLE with real coefficients. By squaring and averaging Eq.previously for the small noise strengths occurring in the

A

(3.4), one gets the correlation functions Taylor-Couette experimen{8]. On the lower level of reso-
lution inherent in this data presentation these results show
02+ 0202+ 20(0as+(a’2 Y —2(0q’) — 2 / similar behavior as ours. However, plottingsd/instead al-
(9 +va)+2v(Qa)+(a™) ~2(0a") ~2v(qq’) lows to identify more clearly the crossover behavior from the
—4v (k9% + 4(k?q?) — 4(xQQq)+4(xqq’) parameter regime with small fluctuations to that with large
ones.
_ o (| 77|2> 3.5 The A variations of 1%, , 1/sy, l/sg, and ofd€¢/dA in-
N 2(R?) ' dicate that this transition is shifted to negatike i.e., into

the absolutely unstable regime. A similar result for the tran-
On the rhs we have used the fact that within our forward-Sition between deterministic and noise-sustained standing

time integration methoé remains uncorrelated with atthe ~ Wave solutions of complex coupled cubic GLE's was de-
same time. and we have approxima(aaR2> by 1/(R2>. duced from the behavior of the second moments of the fre-

Given that(| 7(t,x)|2)=2/dxdt in our finite difference AUeNCY and wave-number power spectra of the fluctuating

simulation it is convenient to scale all correlations in Eq.a@mplitudes[10]: With decreasingu the correlation length
(3.5 by the quantity defined via the time average of the second moment of the

Fourier spectrum oA(k,t) begins to decrease towards val-
ues characteristic for noise-sustained structures in the con-

2 4 M cubic GLE, vectively unstable regime clearly befoye._, is reached
22:(7_ —— Ri={1 1 o when noise is present. Similarly, the width of the frequency
Rﬁ, dxdt §+ pmt 1 quintic GLE, power spectrum starts to increase with decreagirgjready

above the convective-absolute threshpld , [10].

However, the variation of &}, with A shows for the cu-
bic case in Fig5 a broader crossover interval between large
frequency fluctuations in the convectively unstable regime at
A>0 and small frequency fluctuations in the absolutely un-
stable regime al <O than the curves &} and 15 for
(Q+vg—q")?) R? wave-number and modulus fluctuations. The value at

52 = <R2>- (3.7 which 1k, and 18 drop down towards zero agrees quite
well with the peak location of¢/JA. The latter moves with
increasing noise strength further into the absolutely unstable
regime as shown, e.g., for the cubic GLE in the inset of Fig.
4(b).

The variations ofs(A) with A at different downstream
locationsx=€/2,, and Z are similar to each other: with
é)ecoming more negative, i.e., further and further into the
absolutely unstable regime the fluctuatiosis and s, be-

ome constant at levels that depend on the measuring
ocation—the closer to the inlet, whef becomes smaller
the larger are the fluctuations. This behavior is reflecting the
relation sQ~sqocR*1 that can be read off directly from Eq.
(Q%)=32+(q'?) 3.8 (35.

(3.6

thereby removing the singularities from the reduced correla
tion functions. For example, one finds that

Here we have neglected the second line in Bdp), since all
correlations in Eq(3.5) involving the growth ratec are very
small.

(Q?) is typically two orders of magnitude larger than
(g?) in the absolutely unstable regima&<0,—cf. Figs. 5
and 6 discussed further below. There the only contribution
to Egs.(3.5 and(3.7) of the same order a¥)?) are(Qq’)
and(q’? )—all the other correlations can be neglected—an
furthermore(Qq’)=(q’'? ). Thus,
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Vr——————

as a peak i¢/dA. In the quintic case all this occurs at the
unshifted convective-absolute threshadld=0. Common to
both cases is that the fluctuations decrease along the front in
both regimes with growing pattern amplitugé|A[?).

For negative subcritical amplitude growth ratess.0, we
did not find noise-sustained, large-amplitude, backwards bi-
furcating patterns when is positive: the nonlinear deter-
ministic front dynamics of the quintic GLE blows any large-
0 amplitude part downstream away from the inlet whére
. =0 and eventually any finite system is filled only with
small-amplitude fluctuations oA around the stable fixed
point A=0 of the unforced system.

20t

sQ/Z
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N/\

< | Ja=01273
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FIG. 7. Spatial variation of the standard deviatisp of the APPENDIX

frequency reduced by (a) and of \{JA[?) (b) for the quintic GLE Here we estimate the noise dependence of the down-
in the absolutely and convectively regime &t=—0.1273 andA  stream growth lengtif of the nonlinear structure in the con-
=0.0908, respectively. After the integration time f=5x 10° vectively unstable regime of the cubic GLE where this struc-
used in this plots, was for A=0.0908 not yet fully stationary in ture is noise sustained. To that end we approxinfale the

the ggowth region of {|A]?). Parameters arg.=0.05 and o length where the mean squared amplitud® ()
=10 =(]A;in(X)|?) of the linear GLE has grown from the inlet
value A(x=0)=0 to, say, one half of the nonlinearly satu-

The downstream reduction of the variargg of the fre- trated bulk valug|A|?)= /2. So we solve the equation

qguency fluctuations with increasing distance from the inle
and with increasing amplitude along the front is shown in
Fig. 7 for the quintic GLE. There we compare the behavior
of s, together with the front profiles of(|A[?) in the abso-

lutely and in the convectively unstable regime close to the ) )
thresholdA =0 for x=0.05. for €. Actually the linear solution may not hold there any-

more. But as it will become obvious below the result is
roughly independent of the coefficient chosen in &il) so
also smaller numbers thgncould be chosen here for a char-
We have studied numerically the influence of small addi-acteristic growth length.
tive noise on pattern formation near a forwards and near an We evaluate the equal-time correlati@),(x) via the
inverted bifurcation as described by a cubic and quinticfrequency integral of the spectru@;;,(x,w) of the time-
GLE, respectively, when a finite group velocitycan blow  displaced autocorrelation function of fluctuationsAyf, at
the finite-amplitude part out of the system, i.e., in the vicinitythe same downstream positianFor large downstream dis-
of the so-called convective-absolute instability @  tancesx from the inlet this spectrum is given Hy1]
=vlve_a(u) —1=0. The front that connects the inlet con-

1
Clin(X:f’):EM (A1)

IV. CONCLUSION

dition A(x=0)=0 to the finite-amplitude downstream bulk 2 1 1

part (|A|?)=RZ is for the cubic GLE more sensitive to the Ciin(X, @)= ( + )e—2lmK1X
applied noise strength than for the quintic case. This is partly 2|KT —Kal? ImKy ~ ImK;

related to the different magnitudes of the curvatures of the (A2)

deterministic GLE potentials around the stafes 0 andA .
=Ry : the resulting growth enhancement of fluctuations neawlth
A=0 is larger in the cubic than in the quintic case and in
addition the damping of fluctuations ne&r= Ry is smaller Ké)= Tivie a—p—io—iVuc_a (A3)

in the cubic than in the quintic case.

In the cubic case the transition between the regimes of This spectrum(A2) is strongly peaked at the centes,
small and large fluctuations of amplitude, frequency, and=0, of the band of modes;2Vuuc 1 <®O<2\upic_a
wave number is shifted to a negati¥einto the absolutely that are amplified in the convectively unstable regime. Thus,
unstable regime. Simultaneously, the pattern growth lengtithe aforementioned frequency integral may be approximated
€(A) has there a characteristic inflection point that shows ugby

046301-7



A. SZPRYNGER AND M. LUCKE

= d
Cin(x)= fﬁx£C|m(x,w)~ Ve aCiin(X,0=0)

0_2

_ exptiK(o=0x

4\u

The last equality follows from EqA2) at w=0. Applying
now condition(Al) one obtains

(A4)
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1 21/2M3/4
- iKi(w=0) In o

(A5)

Using pe—a/n=(1+A)? in Eq. (A3) one sees thatk ; (o
=0)=u[1—V2A+O(A)] for A<1 so that finally at
fixed u,

€~—[1+2A+O(A)](In o+ cons). (A6)
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